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ABSTRACT 

The role of one pion exchange is examined in the deep inelastic region 

for electron-nucleon scattering. Exclusive channels like nN, nA 

will contribute negligible, non-scaling contributions to o 
S’ 

On the other 

hand, inclusive final states like N + “anything”, where the detected final 

nucleon is slow in the lab, afford the opportunity to experimentally determine 

the structure functions for electron-pion scattering provided the characteristic 

OPE structure (dip or peak) is observed at small momentum transfer. 
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I. INTRODUCTION 

Inelastic electron-proton experiments have been carried out 

recently in which hadrons are detected in coincidence with the 

1 
scattered electron. The region explored in these coincidence 

experiments does not yet overlap significantly with the region in 

which scaling has been established experimentally in inelastic 

2 
electron-proton scattering. Nevertheless these coincidence data 

are very interesting in their own right. Two results of particular 

relevance to our work here are the followingi: (1) the charged 

pion elastic form factor Fn(q2) is now well measured out to 

space-like momentum transfers q’s -i(GeV/c$‘; (2) a sizable 

contribution to the scalar cross section (us) is seen in the ITN and 

IT A final states. These two items are in fact related because one 

pion exchange (OPE) can contribute to these final states, and to 

the extent that OPE is largs, one will have sizable contributions to 

os and corresponding sensitivity to F,(o’). 

It is natural to ask, therefore, about the role OPE will play in 

3 
the deep inelastic (scaling) region. In particular what is the 

relation, is any, between the (small) value of cS observed in the 

deep inelastic experiments and OPE contributions to exclusive 

final states (irN, rrA, etc. ) or to the inclusive final state 1~ + 

“anything”? Moreover, is there anything besides 
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FV(q2) that can be learned by isolating OPE contributions and measur- 

ing the residue of the pion pole? 

In Sec. II we show that the answer to the first question is negative. 

Namely, the pion current contributions will not scale and will rapidly 

vanish in the deep inelastic region. In Sec. III we answer the second 

question with a qualified yes. We show that the process e + nucleon -+ 

e ‘+ nucleon’+ “anything” in an appropriate kinematic region has a 

OPE contribution which scales. Moreover, the residues of the pion 

pole term in the cross section for this process are proportional to 

(4 
52 ’ 

the structure functions which describe inelastic electron-pion 

scattering. These objects are of obvious interest and deserve 

experimental measurement. It seems necessary, however, to pick 

processes for which the transition nucleon - nucleon’ implies non-zero 

quantum number change in order to eliminate competing mechanisms 

which would otherwise overwhelm one pion exchange. This complicates 

the experiment and is the reason that we have qualified our answer. 
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II PION CURRENT CONTRIBUTIONS 

Examples of processes to which the yvrrn vertex contributes 

are shown in Fig. 1. Throughout our work we will ignore the 

standard lepton factors and the photon propagator and talk in terms 

of the cross section for a virtual photon (yv) incident upon a nucleon. 

We choose the z axis along the incident photon direction and work 

in the rest frame of the target nucleon (lab system). 

First consider process (a) y, + p * n++n (Fig. la). Throughout 

our work we consider the Bjorken limit4 -q2 e Q2+ m , 

mv = p.q- m, with fixed w = 2mv/Q2 (m = nucleon mass, lo = pion mass) 

In terms of these variables one has 

s = (p+q)‘= Q’(w-i)+ m2- Q2(o-1). 

In addition to Q‘ and w , one more variable is required; we choose 

it to be the invariant momentum transfer 

t=(p’-p)2 = 2m2- 2mE’. 

Furthermore, since we are interested in the OPE contribution, we 

keep t fixed and small when carrying out the Bjorken limiting 

process. This means that the lab energy E’ of the recoil proton, 

and hence all components of its momentum, remains small in the 

labas Q’+*. 

The minimum value of -t occurs for forward scattering and is 

tmE -m’/[ o(w-I)]. (2.1) 
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Clearly then, the condition that one be near the pion pole, -t 
mc 

- 1-,‘, 

can only be met at large ,values w z 7. 2. As we will see below, 

this fact tends to suppress the OPE amplitude since it contains a 

-1 
factor of w . 

The OPE amplitude corresponding to Fig. l(a) is 

AI* = - (Zk-q)’ F2(q2) i ii 
t-p2 

; b’)iy,Gp) G gnNN 

(2.2) 

where Fn is the pion elastic form factor. As is well known, Eq. (2. 2) 

alone is not gauge invariant. We can correct this formally by the 

substitution 

(2.3) 

where v is any four vector.5 The particular choice of 

v tJ is not crucial since the quantity q’ A has no pole at t = p2, 

unlike AI*. For convenience we choose v ’ = q’; this has the simple 

virtue that when we contract the amplitude (2. 3 ) with a polarization 

vector for the virtual photon (Ed) the second term on the right hand 

side of Eq. (2. 3) makes no contribution since E kq IJ.=o. 

Squaring the OPE contribution of Eq. (2. 2) one finds 

’ = 2(3~~C-Q~4~ &)& (2A4) 
2mWOPE 

where tC 

$= s” Ep w (2.5) 

and where tC is the momentum transfer beyond which OPE is no 
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longer credible due to absorption and/or form factor effects at the 

rrNN vertex. (Typically -tC = (3-6)~. ‘) The quantity Ws introduced in 

Eq. (2. 5) is related to the familiar scalar cross section 6 
by 

a = 4r2LY ws 
SK (2. 6) 

where 

K = (s-m’)/Zm. 

Clearly the expression (2. 4) does not scale and instead is expected 

to vanish rapidly as Q2+m because of the presence of the pion form 

factor. Correspondingly oS * F n2Q2s-2. For orientation suppose that 

FV(-Q2) = (i+Q2/mp2)-1. Then for Q2 = Z(GeV/c)‘, w = 8, -tc= 5P2 

Eq. (2. 6) contributes 

OPE 
OS 

= 0.09pb 

which is small in comparison to the cross sections o 
S 

= 1-2pb, D T= 20 pb 

measured in this range in the inelastic electron-proton experiments. 

In Table I we give the contribution of Eq. (2.4) at other values of QL 

and w. 

For convenience we list in Table II the experimental value of 2mWS 

computed by assuming R = c /o 
S T 

= 0.18 and VW,(W) = 0. 3 for w? 3. 

These values are presumably upper bounds to Ws. Of course, unlike 

the entries in Table I the entries in II should not be multiplied by a form 
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Finally the contribution of Fig. l(a) to oT is, as expected from 

general arguments, 7 even smaller (v,/u,) = 0(1/Q’). 

Consider next the process of Fig. l(b); yv+p- TI 5 A 
++ 

. The 

minimum momentum transfer is now given by 

tm = -m,‘/(u-1) 
-1 2 -1 

+m w (2. 7) 

where m 
A 

is the mass of the final A (1236) resonance. Proximity 

to the pion pole, tm c -p2, now requires w 236. This is a significant 

increase over that for the nucleon final state and is indicative of the 

trend should one consider higher mass states. 

We impose gauge invariance as above and find8 for diagram l(b) 

2mW iPE =($) ‘off” 1 + d(-z - m2)Jt~~~2)2 

tC 
(2.8) 

where g, is the ANr coupling constant and is given in terms of the 

width by 
3 

f (Ep+ m), 

with 

q2 = A (mi. m2, 1-1’ ) /(k-n:) 

(2.9) 

Ep = (mi+ m2 - p21/2mA 
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where A(x, y, z) is the triangle function. 

As one could anticipate,the result (2. 8) for the rrA final state 

has the same form as the rrN final state, Eq. (2.4), and in the deep 

inelastic region does not scale. For w = 40 and all other parameters 

as listed above the the rrN final state one finds a meager 

“&“A) = 0.02pb. 

The contribution of Eq. (2. 8) at other Q2, w values is given in Table III. 

Having failed to find interesting OPE contributions from the IAN or 

rrA final states we consider the “Drell process” illustrated in Fig. i(c). 
9 

That is, we are considering final states v+X where the missing mass 

mX2 grows linearly with Q2. Namely we set 

2 
mX 

= XQ2 

and consider the limit Q2+m , Xfixed. (If we consider the case of 

mX2 fixed it is clear that one can only find results like Eqs. (2. 4) 

and (2. 8). ) A simple calculation gives the minimum momentum transfer 

tm = (q..k)2min = - xQ’(w-1) -1 
- -m as Q2- a. 

(2.10) 

Thus the requirement that we be near the pion pole at t = p2 can never 

be satisfied. Processes of the type i(c) play no role in the scaling 

region. 
10 
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Let us summarize the results of this section. Pion current 

contributions with low mass baryon states like those in Figs. l(a) and 

(b) give interestingly large contributions is3 to oS in the kinematic 

range Q2 < 1 (GeV/c)‘, 
2 

s = 4-5 (GeV) . As we move beyond this range 

(larger Q2 and/or larger s) these contributions will decrease and be 

of little importance. High mass baryon states, Fig. l(c), are suppressed 

by the tm effect. 
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III. INELASTIC e-v SCATTERING 

In this section we no longer insist that the exchanged pion 

remain a pion after it has absorbed the incoming virtual photon. 
11 

Instead we allow arbitrary final states at the upper vertex as 

indicated in Fig. 2. We keep the lower vertex simple however. The 

simplest case is that in which the target nucleon remains a nucleon 

as illustrated in Fig. Z(a). Of course now that the final state at the 

upper vertex is no longer constrained to be spinless, OPE can 

contribute to both cr 
S 

and oT. Indeed if the basic constituents of 

the pion are spin 1/Z objects one expects only oT to persist in the 

scaling limit. 

The appropri&te choice of variables is as follows. Since we are 

interested in staying close to the pion pole we want to keep 

t = ~2=(p*-p)2 = 2m2 -2mE’ 

fixed as Q2 - m. As remarked already for the ?rN final state this 

means the recoil nucleon will be slow in the lab. In inelastic e-N 

scattering the unobserved final state of the nucleon has mass 

squared s=Q’(w -i)+m’. Thus it is natural to introduce a variable 

W’ which is analogous to w and in terms of which the mass squared of 

the final state of the virtual photon-virtual pion system may be 

written 

SS = (p + q-p+ Q’(w’ -1) b+o ($1 . 

(3.1) 
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As the remaining variables one may pick 0 and a, the spherical 

angles of p’ as seen in the laboratory. (Recall the virtual photon - 

is incident in the fz direction. ) 

Finally we give the relation between w ’ , the variable defined by 

Eq. (3.1) and the vector p’ as measured in the lab system. It is 

w' -1 = (w-1)(1-y), (3. 2) 

where y is the fraction of the total minus momentum carried by p ‘, 

namely 

y =E’-p’cos 6’ 

m(l-A) ’ (3. 3) 

The minimum momentum transfer occurs for e=O and is given 

by a simple generalization of Eq. (7.. 1) 

We see that we can 

sufficiently large. 

tm = -m’[(-!$) ($,-1)1-t. 

get near the pion pole provided w/w ’ is 

In particular, -tm spz if w/w ‘2 7.2. 

The amplitude corresponding to diagram 2(a) is 

AP= g 
u(p)iy5u(p) 

nNN 
t-p2 

(X 1 j’J T). 

(3.4) 

(3.5) 
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factors of (m/E) 
-112 for spin l/Z, 312. . . particles in contrast to 

factors of (2E) 
-112 

for spin 0,1, . . . particles when writing the 

S matrix element in terms of the Feynman invariant amplitude, 

the amplitudes CPv and WPV are dimensionally different. The 

correspondence is 

2mW ++C 
1 1 

W2 c2 
2m-7-- 

m P2 

Note that if the pion structure functions Ci, C2 obey Bjorken 

scaling then Eq. (3. 6) is a special case of the generalized scaling 

12 13 
laws of J. Ellis and J. Stack. If we contract Eq. (3. 6) with 

polarization vectors for the virtual photon and supply trivial kinematic 

factors we can rewrite (3.6) in an equivalent form 

d 0; 

(w-i) dtdw ? 

b,Q2;t,s') (w.-l) 
= 

4lTo 
+, Q2) 

(3.8) 

where i= T, S. 

The fact that there is no mixing between the transverse (T) and 

scalar (S) terms in Eq. (3.8) is special to the kinematic region w ‘/w <<1 

which we study. (Recall Eq. (3.4). ) 

For completeness let us record the relation between the cross 

section differential in t,w ’ to the cross section differential in the 
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[In Eq. (3. 5) and in what follows 1 ) and (I denote states with an 

invariant normalization of 2E particles per unit volume. ) In writing 

Eq. (3. 5) we have taken the upper vertex to be on shell, i. e. t=p‘. 

We will return to this point later. 

Squaring (3. 5) and summing over nucleon spins one finds in the 

limit Q2 -+ m with t,w.w ’ fixed 

(3. 6) 

where Cfl’ v 1s the imaginary part of the invariant forward virtual 

photon-pion scattering amplitude. (W” 1s the virtual photon-nucleon 

amplitude. ) It can be expanded in terms of scalar invariants in an 

obvious manner 

1 ImCI*“- 
71 71 

-2(~(l)l j’l r$(nl jy/ ri11))(2d364(q +e -P,) 

P " = c,(q2,q.e) -gP"+ 9 
I 1 

+ 
q 

yq2>q. f) p-l.y]p.~$}. 
P 

(3. 7) 

The dimensionless amplitudes C1 2 appearing in Eq. (3. 7) differ 

from the familiar W1 2 amplitudes defined for nucleon targets in 

normalization. Because of the (unfortunate) convention of extracting 
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laboratory momentum of the recoil nucleon: 

dai 
N 7iE’ 

do; 
=- 

dtdw ’ w d3p” (3.9) 

Let us estimate what part of the nucleon scaling functions 

W1 and vW2 might be contributed by the OPE mechanism. Suppose 

at first the target nucleon and the detected nucleon are both protons. 

The exchanged pion will be a TI’. Assume 

OT (Y,v710)=g UT(YVP) 

as(yvrrO) -JT(yv’o) 

when compared at the same s and Q‘ values. In terms of F2(u )= I, UT2 

we can write the total contribution of Eq. (3.6) as 

FZpb ‘) 

(3.10) 

where t m is given by Eq. (3.4), tC is the cutoff discussed in Sec. II, 

and w ’ M , the maximum value of w ‘, is fixed by the condition 

tm = tC. 

If we approximate the experimental curve for F 2p(w ) by 

FZp(m )=O. 3 (9) ; 1 SW53 

=o. 3 3’w 

we find that 
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Eq. (3. 10) generates values of F2 
OPE 

(w ) which are listed in 

Table IV. While it is clear that F2 OPE is not a large fraction of 

the total F 

either, 

2P’ 
Table IV indicates that it is not hopelessly small 

If we change the target to a neutron but still require a recoil 

proton (or conversely a proton target and recoil neutron) we will be 

studying rr-(rr+) exchange. Assuming oT(~vr*)=$T(~Vp) the OPE 

contribution is double that indicated in Table IV. 

The figure of merit for detecting the OPE term is not the 

fraction of the total F2 that it contributes, rather one should look 

at the background in the small t region for which OPE can be 

applied. In the kinematic regime under study (s >>s ‘, o > >1, t small) 

Regge exchange mechanisms are applicable; Fig. 3. The backround 

will be smaller if we require a charge exchange so we continue to 

discuss this case. 

It seems reasonable to assume that Ni? pair production may be 

neglected until super high values of s are reached. The final states 

will thus consist of a single baryon (p or n) accompanied by mesons. 

As a rough guess let us suppose that at most 50% of the total 

u(y,p) comes from final states having 1 t / = ](p’-p)’ 1 <I tCI =5p2. 

Existing data on the total cross section difference u(yVp)-u(y,n ) 

indicates that at large values of w (say w -20) the t channel isospin 

1 exchange is = 10% and falling with w Thus aside from 
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Clebsch-Gordon coefficients (which are of order magnitude 1) we 

estimate that the channel yv+n +X+p in the interval 1 t 1 <5~ 
2 

contributes at most 5% of the total cross section for y v +P - “anything”. 

As Table IV indicates the OPE is of comparable size and hence ought 

14 
to be detectable. 

So far we have said nothing about “of mass-shel?’ effects. For 

example, sometimes the lower vertex in Eq. (2a) is modified 

by the addition of a form factor Fx&t) at the pion 

nucleon vertex; ( FnNN(p2) = 1). Although FrNN has a branch 

point at t=(3p)‘, the threshold for the three pion state, one does 

not expect significant variation of FnNN until values It I=(m +p)’ 
P 

2 
or m 

A* 
are reached. Thus if we expand FrNN(t)=l+(t-p’)R(t) we 

can be confident that in the range 05 -tS 5p2 R(t) is effectively 

constant. Thus the R(t) term contributes only a background 

amplitude which is flat in t. Similar remarks apply to off shell 

corrections at the upper vertex, contributions from the exchange 

of particles and Regge trajectories other than the pion, as well as 

multiple exchange mechanisms. Only the OPE term, Eq. (3. 6), has 

a significant variation over the range 05 -ts 5)~‘. This is the 

experimental signature which one must see to unambiguously 

identify the OPE. In particular it is necessary to have data at 

values of t at and inside of -t=p’. Provided the background 
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amplitude with which OPE interferes (destructively or constructively) 

is not overwhelming in comparison to the OPE amplitude on? will see 

a dip or peak inside of -t =p2 and thus be able to find the pion 

structure functions C1 and C2. Our crude estimates above indicate 

that the background will not be overwhelming provided we look at 

the charge exchange case Y,+n +X+p (deuteron targets). 

An alternative way to force isospin 1 exchange in the t channel 

is to use a proton target and require a A(i236) at the lower vertex: 

Fig. Z(b). The cross section for this can be written down 

immediately from examination of Eqs. (2.4), (2. S), and (3.6) and is 

‘,&= & [$) [+$jb:-rn’) (*2k Ctj f 

(3.11) 

The minimum transfer is 

2 
-m 

tm 
A m2 =-+-. 

($1) ( Z.) 
(3.12) 

In Table V we give values obtained by integrating Eq. (3. 11) under 

the same assumptions as for Table IV. 
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Table I. Values of 2mW;SpE (F;,-2 for the ir+n final state; Eq. (2.4). 

w -6 8 10 15 20 

t%qp2 .I1 . 13 .12 .09 .07 

-5p2 .23 .22 .19 14 10 

-7p2 .32 .29 .25 .17 .13 

50 100 

T 03 .Ol 

.04 .02 

.05 I .03 

Table II. Experimental values of 2m 2 assuming R = 0.18. 

w =6 ! 8 1 10 15 1 20 50 1 100 1 

28 1 .37 1 .46 1 .69 1 .92 2.29 14.58 1 

S 
TableIII. Values of 2mWgpE (Fri)-’ for the a-A ++ final state; 
Eq. (2.8). 

100 200 

t .16 .I0 

30 

.22 

. 36 

40 
- 

.23 .22 .19 

.30 

.33 

50 

28 

. 30 

75 

.23 

.24 

19 .I1 rt .20 .12 
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Table IV. The one pion exchange contribution to the scaling function 
F2b ). The entries listed are values of FypE(w )/ (0. 3) computed for 

the p final state Eq. (3. 10). 

tC= -Pi 

-zt12 

-5p2 

-10 p2 
i 

w =20 30 40 50 

.00031 .00059 .00072 .00078 

.0022 .0030 .0033 .0035 

.oi43 .0163 .0170 .0173 

.0430 .0461 .0472 .0478 
i 

Table V. The one pion exchange contribution to the scaling function 

F2(u). The entries are values of FpPE(~)/(O. 3) computed for the 
A+‘final state - Eq. (3. ii). 
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FIGURE CAPTIONS 

Fig. 1 (a) One pion exchange contribution to electroproduction of 

r+n. (b) electroproduction of n-A++ via V- exchange. 

(c) pion current contributions to high mass baryon states. 

Fig. 2 (a) Inelastic electron-pion scattering with a nucleon recoil 

(b) with a recoil A(1236). 

Fig. 3 Regge exchange mechanisms which generate the background 

amplitude with which one pion exchange will interfer. 


